Galindo-Garcia Identity-Based Signature Revisited.

Sanjit Chatterjee, Chethan Kamath and Vikas Kumar

Indian Institute of Science, Bangalore

August 21, 2022

Table of contents

-Formal Definitions

FORMAL DEFINITIONS

- Formal Definitions

Public-Key Signature and Identity-Based Signature

Definition–Public-Key Signature

An PKS scheme consists of three PPT algorithms $\{\mathcal{K}, \mathcal{S}, \mathcal{V}\}$

- Key Generation, K
 - Used by the user to generate the public-private key pair (pk, sk)

pk is published and the sk kept secret

Run on a security parameter κ

$$(\texttt{pk},\texttt{sk}) \xleftarrow{\hspace{1.5pt}\$} \mathcal{K}(\kappa)$$

► Signing, S

Used by the user to generate signature on some message m

The secret key sk used for signing

$$\sigma \xleftarrow{\hspace{0.1in}\$} \mathcal{S}(\mathtt{sk}, m)$$

Verification, V

• Outputs 1 if σ is a valid signature on *m*; else, outputs 0

 $\mathsf{b} \leftarrow \mathcal{V}(\sigma, \textit{m}, \texttt{pk})$

- Formal Definitions

Public-Key Signature and Identity-Based Signature

Definition-Identity-Based Signature

An IBS scheme consists of four PPT algorithms $\{\mathcal{G}, \mathcal{E}, \mathcal{S}, \mathcal{V}\}$

- ▶ Set-up, *G*
 - Used by the PKG to generate the public parameters (mpk) and master secret (msk)
 - mpk is published and the msk kept secret
 - Run on a security parameter κ

$$(\texttt{mpk},\texttt{msk}) \xleftarrow{\hspace{1.5pt}{\text{\$}}} \mathcal{G}(\kappa)$$

• Key Extraction, \mathcal{E}

- Used by the PKG to generate the user secret key (usk)
- usk is then distributed through a secure channel

$$\texttt{usk} \xleftarrow{\$} \mathcal{E}(\texttt{id},\texttt{msk})$$

Formal Definitions

Public-Key Signature and Identity-Based Signature

Definition-Identity-Based Signature...

An IBS scheme consists of four PPT algorithms $\{\mathcal{G}, \mathcal{E}, \mathcal{S}, \mathcal{V}\}$

- Signing, S
 - Used by a user with identity id to generate signature on some message m
 - The user secret key usk used for signing

$$\sigma \xleftarrow{\hspace{0.1in}\$} \mathcal{S}(\texttt{usk}, \texttt{id}, \textit{m}, \texttt{mpk})$$

- Verification, V
 - Outputs 1 if σ is a valid signature on m by the user with identity id
 - Otherwise, outputs 0

$$b \leftarrow \mathcal{V}(\sigma, \mathtt{id}, m, \mathtt{mpk})$$

-Formal Definitions

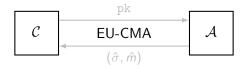
Security Models for PKS and IBS

SECURITY MODELS FOR PKS AND IBS

- Formal Definitions

Security Models for PKS and IBS

Security Model for PKS-EU-CMA

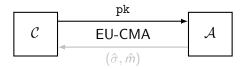


Existential unforgeability under chosen-message attack

Formal Definitions

Security Models for PKS and IBS

Security Model for PKS-EU-CMA

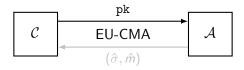


- Existential unforgeability under chosen-message attack
- C generates key-pair (pk, sk) and passes pk to A.

Formal Definitions

Security Models for PKS and IBS

Security Model for PKS-EU-CMA

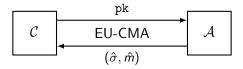


- Existential unforgeability under chosen-message attack
- C generates key-pair (pk, sk) and passes pk to A.
- Signature Queries: Access to a signing oracle

Formal Definitions

Security Models for PKS and IBS

Security Model for PKS-EU-CMA



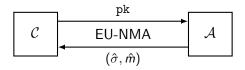
- Existential unforgeability under chosen-message attack
- C generates key-pair (pk, sk) and passes pk to A.
- Signature Queries: Access to a signing oracle
- ► Forgery: *A* wins if
 - $\hat{\sigma}$ is a *valid* signature on \hat{m} .
 - \mathcal{A} has *not* made a signature query on \hat{m} .
- Adversary's advantage in the game:

$$\mathsf{Pr}\left[1 \leftarrow \mathcal{V}(\hat{\sigma}, \hat{m}, \mathtt{pk}) \mid (\mathtt{sk}, \mathtt{pk}) \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{K}(\kappa); (\hat{\sigma}, \hat{m}) \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{A}(\mathtt{pk})
ight]$$

Formal Definitions

Security Models for PKS and IBS

Security Model for PKS-EU-NMA



- Existential unforgeability under no-message attack
- C generates key-pair (pk, sk) and passes pk to A.
- Signature Queries: Access to a signing oracle-
- ▶ Forgery: *A* wins if
 - $\hat{\sigma}$ is a *valid* signature on \hat{m} .
 - A has not made a signature query on m̂.
- Adversary's advantage in the game:

$$\mathsf{Pr}\left[1 \leftarrow \mathcal{V}(\hat{\sigma}, \hat{m}, \mathtt{pk}) \mid (\mathtt{sk}, \mathtt{pk}) \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{K}(\kappa); (\hat{\sigma}, \hat{m}) \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{A}(\mathtt{pk})
ight]$$

- Formal Definitions

Security Models for PKS and IBS

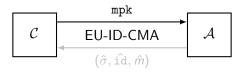
Security Model for IBS: EU-ID-CMA

 Existential unforgeability with adaptive identity under no-message attack

Formal Definitions

Security Models for PKS and IBS

Security Model for IBS: EU-ID-CMA

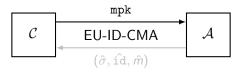


- Existential unforgeability with adaptive identity under no-message attack
- C generates key-pair (mpk, msk) and passes mpk to A.

Formal Definitions

Security Models for PKS and IBS

Security Model for IBS: EU-ID-CMA

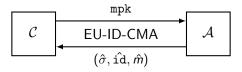


- Existential unforgeability with adaptive identity under no-message attack
- ▶ C generates key-pair (mpk, msk) and passes mpk to A.
- Extract Queries, Signature Queries

Formal Definitions

Security Models for PKS and IBS

Security Model for IBS: EU-ID-CMA



- Existential unforgeability with adaptive identity under no-message attack
- ▶ C generates key-pair (mpk, msk) and passes mpk to A.
- Extract Queries, Signature Queries
- Forgery: \mathcal{A} wins if
 - $\hat{\sigma}$ is a *valid* signature on \hat{m} by \hat{id} .
 - \mathcal{A} has *not* made an extract query on id.
 - A has not made a signature query on (id, m̂).
- Adversary's advantage in the game:

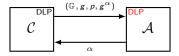
 $\mathsf{Pr}\left[\mathbf{1} \leftarrow \mathcal{V}(\hat{\sigma}, \hat{\mathtt{id}}, \hat{m}, \mathtt{mpk}) \mid (\mathtt{msk}, \mathtt{mpk}) \stackrel{\$}{\leftarrow} \mathcal{G}(\kappa); (\hat{\sigma}, \hat{\mathtt{id}}, \hat{m}) \stackrel{\$}{\leftarrow} \mathcal{A}(\mathtt{mpk})\right]$

- Formal Definitions

Security Models for PKS and IBS

Hardness Assumption: Discrete-log Assumption

Discrete-log problem for a group $\mathbb{G}=\langle g
angle$ and $|\mathbb{G}|=p$

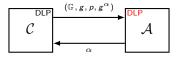


- Formal Definitions

Security Models for PKS and IBS

Hardness Assumption: Discrete-log Assumption

Discrete-log problem for a group $\mathbb{G}=\langle g\rangle$ and $|\mathbb{G}|=p$



Definition. The DLP in \mathbb{G} is to find α given g^{α} , where $\alpha \mathbb{Z}_p$. An adversary \mathcal{A} has advantage ϵ in solving the DLP if

$$\Pr\left[\alpha' = \alpha \mid \alpha \mathbb{Z}_{p}; \alpha' \leftarrow \mathcal{A}(\mathbb{G}, p, g, g^{\alpha})\right] \geq \epsilon.$$

The (ϵ, t) -discrete-log assumption *holds* in \mathbb{G} if no adversary has advantage at least ϵ in solving the DLP in time at most t.

Galindo-Garcia IBS

GALINDO-GARCIA IBS

-Galindo-Garcia IBS

Salient Features

Galindo-Garcia IBS - Salient Features

- Derived from Schnorr signature scheme
- Based on the *discrete-log* assumption
- Efficient, simple and does not use pairing
- Security argued using oracle replay attacks
- Uses the random oracle heuristic

Galindo-Garcia IBS

Schnorr Signature and the Oracle Replay Attack

SCHNORR SIGNATURE AND

THE ORACLE REPLAY ATTACK

- Galindo-Garcia IBS

Schnorr Signature and the Oracle Replay Attack

Schnorr Signature

The Setting.

- 1. We work in group $\mathbb{G} = \langle g \rangle$ of prime order *p*.
- 2. A hash function $H : \{0,1\}^* \to \mathbb{Z}_p$ is used.

Key Generation. $\mathcal{K}(\kappa)$:

- 1. Select $z \in_R \mathbb{Z}_p$ as the secret key sk
- 2. Set $Z := g^z$ as the public key pk

Signing. $\mathcal{S}(m, sk)$:

- 1. Let sk = z. Select $r \in_R \mathbb{Z}_p$, set $R := g^r$ and c := H(m, R).
- 2. The signature on *m* is $\sigma := (y, R)$ where

y := r + zc

Verification.
$$\mathcal{V}(\sigma, m)$$
:
1. Let $\sigma = (y, R)$ and $c = H(m, R)$.
2. σ is valid if
 $g^y = RZ^c$

– Galindo-Garcia IBS

Schnorr Signature and the Oracle Replay Attack

Security of Schnorr Signature-An Intuition

- Consider an adversary A with ability to launch chosen-message attack on the Schnorr signature scheme.
- Let {σ₀,...,σ_{n-1}} with σ_i = (y_i = r_i + zc_i, R_i) on m_i be the signatures that A receives.

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & c_{0} \\ 0 & 1 & \cdots & 0 & c_{1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & c_{n-1} \end{pmatrix} \times \begin{pmatrix} r_{0} \\ r_{1} \\ \vdots \\ r_{n-1} \\ z \end{pmatrix} = \begin{pmatrix} y_{0} \\ y_{1} \\ \vdots \\ r_{n-1} \\ z \end{pmatrix}$$

— Galindo-Garcia IBS

Schnorr Signature and the Oracle Replay Attack

Security of Schnorr Signature-An Intuition...

However, A can solve for x if it gets two equations containing the same r but different c, i.e.

$$y = r + zc$$
 and $\bar{y} = r + z\bar{c}$

implies

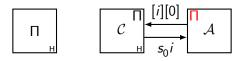
$$z = \frac{y - \bar{y}}{c - \bar{c}} \Pi$$

— Galindo-Garcia IBS

Schnorr Signature and the Oracle Replay Attack

The Oracle Replay Attack

Random oracle H-ith random oracle query [i][0] replied with s₀i.



Tape re-wound to [/][0] Simulation in round 1 from [/][0] using a *different* random function

$$[1][0] \xrightarrow{s_0 1} [2][0] \cdots [I][0] \xrightarrow{s_0 I} [I+1][0] \cdots [\gamma][0] \xrightarrow{s_0 \gamma} \text{ round } 0$$

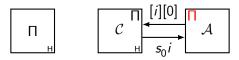
$$[1][0] \xrightarrow{s_0 1} [I+1][0] \cdots [\gamma][0] \xrightarrow{s_0 \gamma} \text{ round } 1$$

— Galindo-Garcia IBS

Schnorr Signature and the Oracle Replay Attack

The Oracle Replay Attack

Random oracle H-ith random oracle query [i][0] replied with s₀i.



1. Tape re-wound to [I][0]

Simulation in round 1 from [I][0] using a *different* random function

$$[1][0] \xrightarrow{s_0 1} [2][0] \cdots [l][0] \xrightarrow{s_0 1} [l+1][0] \cdots [\gamma][0] \xrightarrow{s_0 \gamma} \text{ round } 0$$

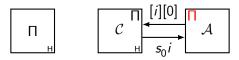
$$[1][0] \xrightarrow{s_0 1} [l+1][0] \cdots [\gamma][0] \xrightarrow{s_0 \gamma} \text{ round } 1$$

— Galindo-Garcia IBS

Schnorr Signature and the Oracle Replay Attack

The Oracle Replay Attack

Random oracle H-ith random oracle query [i][0] replied with s₀i.



- 1. Tape re-wound to [/][0]
- 2. Simulation in round 1 from [/][0] using a *different* random function

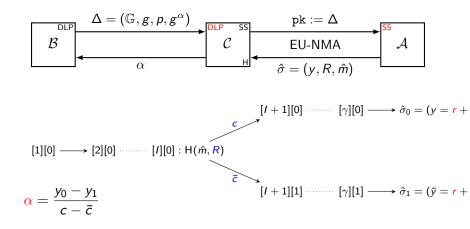
$$[1][0] \xrightarrow{s_0 1} [2][0] \cdots [l][0] \xrightarrow{s_0 l} [l+1][0] \cdots [\gamma][0] \xrightarrow{s_0 \gamma} \text{ round } 0$$

$$s_1 l \xrightarrow{[l+1][1]} \cdots [\gamma][1] \xrightarrow{s_1 \gamma} \text{ round } 1$$

— Galindo-Garcia IBS

Schnorr Signature and the Oracle Replay Attack

Proving Security of Schnorr Signature using ORA



– Galindo-Garcia IBS

Schnorr Signature and the Oracle Replay Attack

Forking Lemma

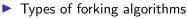
- The oracle replay attack formalised through the forking algorithm
- The forking lemma gives a lower bound on the success probability of the oracle replay attack (frk) in terms of the success probability of the adversary during a particular run (acc)

– Galindo-Garcia IBS

Schnorr Signature and the Oracle Replay Attack

Forking Lemma

- The oracle replay attack formalised through the forking algorithm
- The forking lemma gives a lower bound on the success probability of the oracle replay attack (*frk*) in terms of the success probability of the adversary during a particular run (*acc*)



Forking Algorithm	#Oracles	#Replay Attacks	Success Prob. ($pprox$)
<code>GF–General Forking</code> - $\mathcal{F}_{\mathcal{W}}$	1	1 (<i>i.e.</i> 2 runs)	$\frac{acc^2}{\gamma}$
$MF-Multiple\text{-}Forking(n) - \mathcal{M}_{\mathcal{W},n}$	2	2n-1 (<i>i.e.</i> 2 <i>n</i> runs)	$\frac{\operatorname{acc}^n}{\gamma^{2n}}$

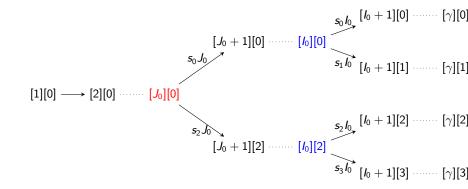
 γ –Upper bound on the number of oracle queries

— Galindo-Garcia IBS

Schnorr Signature and the Oracle Replay Attack

Forking Lemma...

E.g. Multiple-forking algorithm for n = 3.



Galindo-Garcia IBS

Construction and Original Security Argument

GALINDO-GARCIA IBS-CONSTRUCTION

Galindo-Garcia IBS

Construction and Original Security Argument

The Construction

Set-up. $\mathcal{G}(\kappa)$:

- 1. Let $\mathbb{G} = \langle g \rangle$ be a group of prime order p.
- 2. Return $z\mathbb{Z}_p$ as msk and $(\mathbb{G}, p, g, g^z, H, G)$ as mpk, where H and G are hash functions

$$\mathsf{H}: \{0,1\}^* \to \mathbb{Z}_p \text{ and } \mathsf{G}: \{0,1\}^* \to \mathbb{Z}_p.$$

— Galindo-Garcia IBS

Construction and Original Security Argument

The Construction

Set-up. $\mathcal{G}(\kappa)$:

- 1. Let $\mathbb{G} = \langle g \rangle$ be a group of prime order p.
- 2. Return $z\mathbb{Z}_p$ as msk and $(\mathbb{G}, p, g, g^z, H, G)$ as mpk, where H and G are hash functions

$$\mathsf{H}: \{0,1\}^* \to \mathbb{Z}_p \text{ and } \mathsf{G}: \{0,1\}^* \to \mathbb{Z}_p.$$

Key Extraction. $\mathcal{E}(id, msk, mpk)$:

- 1. Select $r\mathbb{Z}_p$ and set $R := g^r$.
- 2. Return usk := (y, R) as usk, where

$$y := r + zc$$
 and $c := H(R, id)$.

Galindo-Garcia IBS

Construction and Original Security Argument

The Construction

Set-up. $\mathcal{G}(\kappa)$:

- 1. Let $\mathbb{G} = \langle g \rangle$ be a group of prime order p.
- 2. Return $z\mathbb{Z}_p$ as msk and $(\mathbb{G}, p, g, g^z, H, G)$ as mpk, where H and G are hash functions

$$\mathsf{H}: \{0,1\}^* \to \mathbb{Z}_p \text{ and } \mathsf{G}: \{0,1\}^* \to \mathbb{Z}_p.$$

Key Extraction. $\mathcal{E}(id, msk, mpk)$:

- 1. Select $r\mathbb{Z}_p$ and set $R := g^r$.
- 2. Return usk := (y, R) as usk, where

$$y := r + zc$$
 and $c := H(R, id)$.

Signing. S(id, m, usk, mpk):

- 1. Let usk = (y, R). Select $a\mathbb{Z}_p$ and set $A := g^a$.
- 2. Return $\sigma := (A, b, R)$ as the signature, where

b := a + yd and d := G(id, A, m).

Galindo-Garcia IBS

Construction and Original Security Argument

The Construction

Verification. $\mathcal{V}(\sigma, \text{id}, m, \text{mpk})$: 1. Let $\sigma = (A, b, R)$, c := H(R, id) and d := G(id, A, m). 2. The signature is valid if

$$g^b = A(R \cdot (g^z)^c)^d$$

Galindo-Garcia IBS

Construction and Original Security Argument

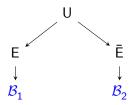
ORIGINAL SECURITY ARGUMENT

– Galindo-Garcia IBS

Construction and Original Security Argument

Original Security Argument

• Let $\hat{\sigma} = (b, A, R)$ be the forgery produced by \mathcal{A} on (\hat{id}, \hat{m}) .



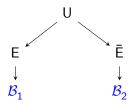
E: Event that \mathcal{A} forges using the same randomiser R as given by \mathcal{C} as part of signature query on id.

– Galindo-Garcia IBS

Construction and Original Security Argument

Original Security Argument

• Let $\hat{\sigma} = (b, A, R)$ be the forgery produced by \mathcal{A} on (\hat{id}, \hat{m}) .



E: Event that \mathcal{A} forges using the same randomiser R as given by \mathcal{C} as part of signature query on id.

In both B₁ and B₂, solving DLP is *reduced* to breaking the IBS.

Galindo-Garcia IBS

Construction and Original Security Argument

In a Nutshell

Reduction	Success Prob. ($pprox$)	Forking Used
\mathcal{B}_1	$rac{\epsilon^2}{q_{\sf G}^3}$	General Forking– $\mathcal{F}_{\mathcal{W}}$
\mathcal{B}_2	$\frac{\epsilon^4}{(q_{\rm H}q_{\rm G})^6}$	$Multiple\text{-}Forking\text{-}\mathcal{M}_{\mathcal{W},3}$

— Galindo-Garcia IBS

-New Security Argument

Our Contribution

We found several problems with B₁ and B₂
 1. B₁: Fails in the standard security model for IBS

2. \mathcal{B}_2 : All the adversarial strategies were not covered

— Galindo-Garcia IBS

-New Security Argument

Our Contribution

- We found several problems with \mathcal{B}_1 and \mathcal{B}_2
 - 1. \mathcal{B}_1 : Fails in the standard security model for IBS
 - 2. \mathcal{B}_2 : All the adversarial strategies were not covered
- The adversary is able to distinguish a simulation from the real execution of the protocol.

– Galindo-Garcia IBS

-New Security Argument

Our Contribution

- We found several problems with \mathcal{B}_1 and \mathcal{B}_2
 - 1. \mathcal{B}_1 : Fails in the standard security model for IBS
 - 2. \mathcal{B}_2 : All the adversarial strategies were not covered
- The adversary is able to distinguish a simulation from the real execution of the protocol.
- Positive contribution:
 - 1. We give a *detailed* new security argument
 - 2. Tighter than the original security argument

Galindo-Garcia IBS

└─New Security Argument

NEW SECURITY ARGUMENT

Galindo-Garcia IBS

└─ New Security Argument

New Security Argument

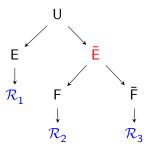
• Let $\hat{\sigma} = (b, A, R)$ be the forgery produced by \mathcal{A} on (\hat{id}, \hat{m}) .

– Galindo-Garcia IBS

-New Security Argument

New Security Argument

• Let $\hat{\sigma} = (b, A, R)$ be the forgery produced by \mathcal{A} on (\hat{id}, \hat{m}) .



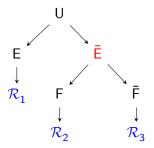
F: Event that \mathcal{A} calls $G(\hat{id}, A, \hat{m})$ before $H(R, \hat{id})$.

-Galindo-Garcia IBS

New Security Argument

New Security Argument

• Let $\hat{\sigma} = (b, A, R)$ be the forgery produced by \mathcal{A} on (\hat{id}, \hat{m}) .

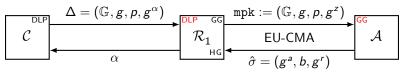


- F: Event that \mathcal{A} calls $G(\hat{id}, A, \hat{m})$ before $H(R, \hat{id})$.
- 1. Problems with \mathcal{B}_1 addressed in \mathcal{R}_1
- 2. \mathcal{R}_2 covers the unaddressed adversarial strategy in \mathcal{B}_2
- 3. \mathcal{R}_3 same as the original reduction \mathcal{B}_2

– Galindo-Garcia IBS

-New Security Argument

Reduction \mathcal{R}_1

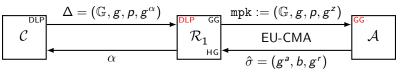


▶ Problem instance plugged in the randomiser R (as in \mathcal{B}_1)

-Galindo-Garcia IBS

-New Security Argument

Reduction \mathcal{R}_1



• Problem instance plugged in the randomiser R (as in \mathcal{B}_1)

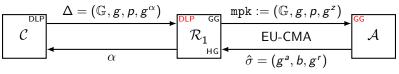
- Coron's technique used to assign target identities (instead of guessing) security degradation reduced to O(q_ε)
- ▶ Signature Query. (id, m) -

Toss a biased coin β

-Galindo-Garcia IBS

-New Security Argument

Reduction \mathcal{R}_1



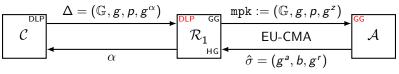
• Problem instance plugged in the randomiser R (as in \mathcal{B}_1)

- Coron's technique used to assign target identities (instead of guessing) security degradation reduced to O(q_ε)
- ▶ Signature Query. (id, m) -
 - Toss a biased coin β
 - 1. If $\beta = 0$, signature given with randomiser R containing g^{α}
 - 2. Else, \mathcal{R}_1 uses knowledge of msk to generate user private key for id and then computes signature using S

-Galindo-Garcia IBS

-New Security Argument

Reduction \mathcal{R}_1



• Problem instance plugged in the randomiser R (as in \mathcal{B}_1)

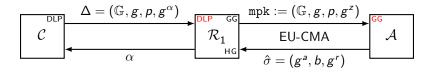
- Coron's technique used to assign target identities (instead of guessing) security degradation reduced to O(q_ε)
- ▶ Signature Query. (id, m) -
 - Toss a biased coin β
 - 1. If $\beta = 0$, signature given with randomiser R containing g^{α}
 - 2. Else, \mathcal{R}_1 uses knowledge of msk to generate user private key for id and then computes signature using S

• General forking algorithm (\mathcal{F}_{W}) used to solve DLP (as in $\mathcal{B}_{1})$

– Galindo-Garcia IBS

-New Security Argument

Reduction \mathcal{R}_1



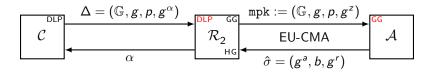
 $[1][0] \rightarrow [2][0] \cdots G(\hat{id}, g^a, \hat{m})$ $[1][0] \rightarrow [2][0] \cdots G(\hat{id}, g^a, \hat{m})$ $[I + 1][1] \cdots [\gamma][1] \rightarrow \hat{\sigma}_1 = (g^a, \bar{b} = a + (\alpha + c_1 z))$

General forking algorithm (\mathcal{F}_W) used to solve DLP (as in \mathcal{B}_1)

-Galindo-Garcia IBS

-New Security Argument

Reduction \mathcal{R}_2

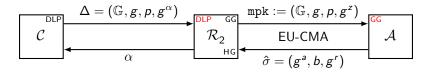


- ▶ Problem instance plugged in the public key pk (as in B_2)
- Signature queries are handled as in B₂
- However, Multiple-forking with n = 1 (M_{W,1}) used to solve the DLP
- Hence, tighter than \mathcal{B}_2

— Galindo-Garcia IBS

-New Security Argument

Reduction \mathcal{R}_2



 $[1][0] \to [2][0] \cdots G(\hat{id}, g^{a}, \hat{m}) \stackrel{d}{\to} [J_{0} + 1][0] \cdots H(\hat{id}, g') \xrightarrow{c} [I_{0} + 1][1] \cdots [\gamma][1] \to \hat{\sigma}_{1} = (g^{a}, \bar{b} = a + (g^{a}, \bar{b}) = a + (g^{a$

Hence, tighter than B_2

Galindo-Garcia IBS

LNew Security Argument

In a Nutshell

Reduction	Success Prob. ($pprox$)	Forking Used
\mathcal{R}_1	$rac{\epsilon^2}{q_{ m G}q_arepsilon}$	$\mathcal{F}_{\mathcal{W}}$
\mathcal{R}_2	$rac{\epsilon^2}{(q_{ m H}+q_{ m G})^2}$	$\mathcal{M}_{\mathcal{W},1}$
\mathcal{R}_3	$\frac{\epsilon^4}{(q_{\rm H}+q_{\rm G})^6}$	$\mathcal{M}_{\mathcal{W},3}$

Conclusion and Future Work

Conclusion and Future Work

We revisited the Galindo-Garcia IBS security argument

- Analysed the original security proof; fixed ambiguities
- Provided an improved security proof

Future Work

Replacing the 'costly' multiple-forking for even tighter reductions-dependent random oracles.

Conclusion and Future Work

THANK YOU!